
jA/AtAI =

tl

ID

AIAA 2000-4844

Experience with a Genetic Algorithm
Implemented on a Multiprocessor
Computer
G. Plassman and J. Sobieszczanski-Sobieski

NASA Langley
Hampton, VA

8th AIAA/USAF/NASA/ISSMO Symposium on
Muitidisciplinary Analysis and Optimization

6-8 September 2000
Long Beach, California

I I I I I I IIII

For permission to copy or to republish, contact the American Institute of Aeronautics and Astronautics,

1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344.

AIAA-2000-4844

EXPERIENCE WITH A GENETIC ALGORITHM IMPLEMENTED ON A
MULTIPROCESSOR COMPUTER

Gerald E. Plassman

Computer Sciences Corporation
3217 North Armistead Avenue

Hampton, VA 23666-1379
757 766 8226, fx-2571

g.e.plassman @larc.nasa.gov

Jaroslaw Sobieszczanski-Sobieski,

Manager, Computational AeroSciences
corresponding author,

NASA Langley Research Center, M/S 139

100 NASA Way
Hampton, VA 23681,
757 864 2799, fx-9715

j.sobieski@larc.nasa.gov

Abstract

Numerical experiments were conducted to find out the extent to which a Genetic Algorithm (GA) may benefit from

a multiprocessor implementation, considering, on one hand, that analyses of individual designs in a population are
independent of each other so that they may be executed concurrently on separate processors, and, on the other hand,
that there are some operations in a GA that cannot be so distributed. The algorithm experimented with was based on

a gaussian distribution rather than bit exchange in the GA reproductive mechanism, and the test case was a hub
frame structure of up to 1080 design variables. The experimentation engaging up to 128 processors confirmed
expectations of radical elapsed time reductions comparing to a conventional single processor implementation. It also

demonstrated that the time spent in the non-distributable parts of the algorithm and the attendant cross-processor
communication may have a very detrimental effect on the efficient utilization of the multiprocessor machine and on

the number of processors that can be used effectively in a concurrent manner. Three techniques were devised and
tested to mitigate that effect, resulting in efficiency increasing to exceed 99 percent.

NQt_tion

Test Case Parameters:

• N Number of processors

• CF Generations between global
communication

• ND Number of communication domain

• NDV Dimension of design space

• NPOP Global population
• NGEN Generation limit

Computed Robustness Metrics:

• V Volume of best feasible solution (X) found

• U Benchmark (N=I) normalized V

• B Generation containing X

• D Normalized standard deviation of B

population volumes

• R Mean radius of B population design
point distribution

Computed Scaiability Metrics:

• "lq'e Elapsed time to complete all BCB
generations

• A Problem analysis portion of TTe

• O BCB computation portion of TI'e

• M BCB communication portion of'Fl'e
• %A Percent A of'I_e

• %0 PercentOofTre

Copyright © 2000 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the
United States under Title 17, U.S. Code. The U.S. Government has a royalty-free license to exercise all fights under

the copyright claimed herein for Governmental Purposes. All other rights are reserved by the copyright owner.

1
American Institute of Aeronautics and Astronautics

• %M PercentM of Tl'e

• S Elapsed time based speedup factor
(over N=I case)

• E Efficiency in percent (100*(S/N))

Computed
• 'l"Te'

• E'

• G

Termination Metrics:

Elapsed time in percent of'lq'e with no
termination criterion

Efficiency in percent of E with no
termination criterion

Final or termination criterion satisfying

generation

Additional

D

tt

Symbolic Metrics:

T Total computation time on a single processor

Tp Portion of T which can be distributed
Tn Portion of T which cannot be distributed

Tc Total communication time

Rt The ratio "lU'efl', the reciprocal of S
Ts The total time saved, T - Tie

Introduction

Genetic Algorithm (GA), and its variant known as

Evolutionary Algorithm (EA), are optimization
techniques that appear to be ideal candidates for
efficient implementation on a machine with many

processors (physical or virtual). This is so because GA
and EA are based on generation and evaluation of a

population of candidate designs, each of which may be
analyzed independently. However, in addition to the
above independent analyses, the algorithm requires a
certain amount of cross-communication and other

operations that cannot be distributed. Therefore, the

scalability is not ideally linear.

This study purpose was to determine experimentally
the GA scalability and to assess three techniques

devised for improving that scalability. Robustness of

solution quality and termination criteria are also
addressed.

The Algorithm

The algorithm known as the Bell-Curve Based Genetic

Algorithm (BCB) introduced in ref. 1, is used. Its
performance was further elaborated on in ref. 2. BCB
may be categorized as the Evolutionary Algorithm
because unlike the conventional GA it does not use a

binary-string based reproduction and mutation
mechanism. Instead it employs a Gaussian distribution

to generate a child from a pair of parents,

To be more specific, the algorithm step-by-step recipe
is as follows:

1) Generate a population of designs by any

technique commonly used in a conventional GA.
2) Analyze each design for the value of the objective

function and constraints. For each design

generate a single number "measure of fitness"
combining the value of the objective (the smaller

the better) and of the constraints (negative =
satisfied, zero = active (critical), positive =

violated); which means that the smaller the
better).

3) Pair-up the designs to form parents for mating;
rewarding fitness with more chances to mate.
BCB uses the electronic roulette to do this,
similar to the conventional GA.

4) Generate a child. The distinguishing features of

the BCB algorithm are concentrated in this step,
usually referred to as the crossover in the GA

terminology. Therefore, the step is described in
more detail:

• Consider a design space in n-dimensions.
Design points P1 and P2 are the parents.

The hyperline PI-P2 connects the parents
and extends beyond P1 and P2 to infinity.

• Parents P1 and P2 generate a child at C.
Point C is at the end of radius r emanating
from B. Point B is located on the

hyperline PI-P2 by chance governed by a

probability distribution defined by the
"bell curve" peaking at point M; the

highest probability is in B falling at M.
There is also a small chance for B falling

outside of the segment (P1, P2). Point M

may be the mid-point of the (P1, P2)
segment, or its position may be shifted
toward the parent of higher fitness.

• The radius "r" defines the distance from

point B to the surface of an n-I
dimensional hypersphere orthogonal to

the segment (P1, P2) and centered at the
point B. The radius length is governed by
another "bell curve" centered on zero. A

point to represent a child design is
generated on the surface of this

hypersphere by a uniform probability
distribution.

• The X coordinates of the child are

checked against the side constraints and
reset accordingly.

5) Repeat steps 3 to 4 to produce the entire offspring

generation that tends to be better fit than its
parent generation. Since the X' s measure the

2
American Institute of Aeronautics and Astronautics

design characteristics directly, there is no need
for binary string manipulation.

6) Group together the newly generated children
population and the previous population from
which their parents were drawn and select the
most fit individuals. These individuals represent

the next generation. The size of the generations is

kept the same by discarding the least fit half of

the grouped populations. Then repeat from step 3
until the maximum number of generations or
satisfaction of some alternate termination
criterion is reached.

No random mutations are used with the above process

because they already occur by virtue of the hyperline

extending beyond P1 and P2 and the orthogonal
hypersphere feature.

Efficiency of Coarse-Grained Operation Engaging

Many Processors Concurrently

In general, such operation will have a computational
part that can be distributed, a computational part that
cannot be distributed, and a certain amount of
communication that tends to be a function of the

number of processors engaged in the distributable part

of the computation. In our paper "communication"
always refers to inter-processor communication. Our

test problem is small enough so that no processor-to-
mass storage communication is required. If that were
not the case, the processor-to-mass storage
communication time would become a factor.

Suppose that the total elapsed time, T, of the
computation at hand when executed on a single
processor machine consists of the sum

(1) T--Tp +Tn

where Tp is the sum of the elapsed times of the parts
that can be distributed (parallelized), and Tn is the
analogous sum for the non-distributable parts.

Let us now assume that the above computation is

executed on N concurrently operating processors on a
machine whose total number of processors NI__N. We
will also recognize that even though the processors

operate independently, they may need to communicate
with each other as required by the solution algorithm.
The communication time is, usually, a function of N,
Tc = Tc (N-). Then, Tl'e, the total elapsed time to
solution is:

(2) TI'e = Tp/N + Tn + Tc (N)

A plot of Tie and its components Tp/N, Tn, and To,

assuming linearity of the latter, is shown in Figure 1.
The plots indicate the importance of Tn and Tc as
limitations on N that can be used effectively.

Comparing TTe to T, we have a few metrics of obvious
interest. The first metric is the ratio of TTe/T, denoted

Rt, which measures, relative to T, the time saved by

using a multiprocessor computer. It can be expressed as

(3) Rt = "ITe/T
= (l/N) (1+ N Tn/Tp + N Tc/Tp)/(l+ Tn/Tp)

The inverse of Rt measures the speed-up

(4) S = 1/Rt

= N (1+ Tn/Tp)/(1 + N Tn/q'p + N Tc/Tp)

The total time saved, Ts, is

(5) Ts = T - "l_l'e

= Tp (1 - 1/N - Tc/Tp)

Finally, the ratio of S/N, denoted E, that measures the
efficiency of utilization of a set of N processors
becomes

(6) E = S/N
= (1+ Tn/Tp)/(l+ N Tn/Tp + N Tc/Tp)

The metrics Tl'e and Ts are of a primary interest to the

machine user, while the metrics S and E matter most

for the machine operator.

The limits of S and E are instructive. Assume L and s

to be large and small numbers, then

(7) Limit S for N--)L

= (l+Tn/Tp)/(Tn/Tp + Tc/Tp)

(8) Limit S for N--)L and Tn/Tp--)s and Tc/Tp-)s

= Tp/(Tn+Tc)

(9) Limit E for N-')L

= (I+Tn/Tp)/(N (Tn/Tp + Tc/Tp)) --) 0

To illustrate the orders of magnitude, suppose that
Tn/Tp = .01 and Te/Tp = .01. Then, for N = 100 and N
= 1,000,000, we have Table 1.

3
American Institute of Aeronautics and Astronautics

Table 1. Sample Parallel Computing Metrics

N

"Vie

Rt

S

Ts

E

lOO booo,ooo
Tp*0.03
0.0297

Tp*0.020001
0.0198

33.7 50.5

Tp*0.98
0.337

Tp*0.99
0.0000505

It is obvious that we need to keep Tn/Tp and Tc/Tp as

low as possible in order to achieve high S and E, and

low Rt. It is apparent that increase of N by four orders

of magnitude produces very little improvement in
terms of Rt, S, and Ts in the presence of even quite

small Tn/Tp and Tc/Tp. These parameters depress

significantly S and E, and they severely limit the
number of processors that can be effectively used.

Indeed, eq. 6 suggests that for Tw"l'p = 0.01 there is
little incentive to increase N beyond 100, even ifTc/Tp
= 0. For that case eq. 4 indicates the asymptotic limit

on speedup, S, is equal to the inverse of the fraction of
total cost which is serial, a characteristic which became

known in the trade as Amdahl's Law (ref. 3). This does

not negate the positive fact expressed in the Ts metric,

one of primary interest to the user, that the time saving
nearly equals Tp for N = 100.

One should note that in Table 1, the ratio Tc/Tp is
assumed constant. Should it be increasing

proportionally to N, as would be likely if a global
communication were maintained, Tie would have

reached 1.02*Tp = T + Tn > T for N = 100. The
multiprocessor machine advantage would evaporate!

This example clearly shows that one must be extremely
wary of introducing a processor-to-processor
communication when implementing an algorithm on a

multiprocessor machine.

Implementation on Many Processors That May "

Operate Concurrent, l,y - Three T echniaues

Cross-communication among the processors is a

significant contributor to Tc affecting the metrics
introduced in the preceding section. Three techniques
have been devised to keep the ratios Tn/Tp and Tc/Tp

as low as possible. Basically, in a Genetic Algorithm

the analysis time of each individual design falls into the
Tp category, while the time for scanning the population
to form the parents and children is in the Tn category,
and that operation generates also Tc. Attempting to

reduce Tn and To, we partition the population of

designs and break down the above operation into
concurrent ones, each performed within the confines of

the individual partitions. We have found, however, that

although the communication limited in that manner
does indeed reduce Tn and Tc, it also tends to degrade
the quality of the final result, the constrained minimum

is not as low as the benchmark. To mitigate that
undesirable effect, a periodic communications across

the partition boundaries are performed. Three different
schemes for the inter-processor, periodically refreshed
communication were tried as described below.

Figure 2 symbolically compares the distribution, over
time and across processors, of principal computational
and any necessary communication tasks for a serial and

three parallel technique implementations. Vertical
direction in each diagram in the figure corresponds to
the flow of time, while horizontal direction in each

diagram symbolizes distribution over the concurrently
operating processors. Task types are identified by

upper case letters, A for the combination of design

point analysis and their fitness evaluation, G for all
remaining BCB algorithm computations, and C for any
communication related overhead. The diagrams shown
are for N = 3, but they indicate patterns readily
extendable to any N. The subscripts "p" and "n" used

with G and C distinguish parallelizable from non-

parallelizable parts of these operations. Note that task
A computations are entirely independent of each other

by definition.

Serial diagram, the single processor implementation, is
a benchmark. Parallel 1, in the figure, represents a
basic technique for parallel BCB implementation,
limited to a partitioning of the population analysis. This

allows parallel A tasks across processors, but leaves Gp
tasks sequential on a single processor. A
communication overhead, represented by task C, is a

penalty for maintaining global solution convergence
over this partitioning. That penalty increases with N
as well as with the requested frequency of

communication achieving a global population update.
Communication frequency, CF, is specified in terms of
the number of population generations between

successive global updates. For a given communication
frequency task C cost remains a function of N. While
task C involves all processors, data are broadcast from

and received by the single processor on which serial
tasks are performed. Thus C is symbolized as a single

processor task. For this technique, the elapsed time for

parallel computations, To = Tp/N, is limited to the time
of a single task A, while time Tn includes the sum of
Gn and all Gp tasks. Task C requires To.

Parallel 2, in the figure, represents an extension to
distribute tasks Gp across processors, effectively

increasing "To" by the time of a single Gp task, while
reducing Tn by the sum of all Gp tasks, resulting in a

4
American Institute of Aeronautics and Astronautics

decrease in the ratios Tn/To and Tn/Tp. This

distribution of Gp leads to an additional
communication overhead task, Cp, similar to C in

character. Presuming C and Cp costs do not dominate
overall cost, this second technique for parallel BCB

implementation results in a potential for dramatic
improvement of S and E, representing significantly

increased scalability when analysis cost is comparable
with other BCB cost.

Parallel 3, in the figure, represents the third and final
parallel BCB implementation technique. This

technique focuses on reducing the elapsed time cost of
communication overhead realized with Parallel 2, a

cost of increased significance given the addition of Cp

and reduction of elapsed Gp time. The reduction is
achieved by a distribution of both C and Cp over

multiple communication domain, represented by C'
and Cp'. A related benefit is the associated distribution

of Gn over communication domain, represented by
Gn'. An additional motivation, given the increase in C

and Cp with N, was the desire to benefit from the
potential increase in scalability promised by the higher

efficiencies, relative to Parallel 1, offered by
employing larger numbers of processors.

While Parallel 2 utilizes a single base processor for

performing Gn and managing C and Cp, Parallel 3
employs multiple base processors, one per

communication domain, each concurrently addressing
domain specific portions of Gn, C, and Cp. The
implementation employed presumes a power-of-two

number of processors, N, partitioned for any given
communication task into a mutually exclusive two-
dimensional covering set of ND equal sized domain.

Consecutive communication tasks, occurring at CF
specified generation intervals, are governed by a

sequence of such domain sets. This sequence begins
with a single global domain and continues with a
number of multiple domain covering sets of varied
granularity. Sequence length and pattern of granularity

variation over element are both determined by N. A
minimum granularity of four processors per domain is
defined for all even numbered sequence elements. The

odd numbered sequence elements define the use of
power-of-four increases in domain size with

corresponding power-of-two decreases in frequency,
including a single (the first) sequence element
specifying global communication. Iteration on this

sequence is performed as necessary, with global
domain usage forced for the final communication task.
Such sequences define a multiple domain

communication strategy favoring communication
locality and concurrency, yet maintaining occasional

communication over larger domain, including global
communication.

Figure 2 illustrates the communication domain
sequence applied for N = 64. This four-element

sequence, notated as {1,16,4,16}, follows global
communication with 16, 4, and 16 element multiple
domain covering sets of 4, I6, and 4 processors per

element, the product of covering set size, ND, and the

common domain size being equal to N for each
element. The illustrated cycle of communication
domain readily extends for N equal to other powers of

two. For example, the sequences { 1, 32, 8, 32, 2, 32, 8,
32} and {1, 64, 16, 64, 4, 64, 16, 64} represent the
order and size of covering sets to be addressed when N
= 128 and N = 256. Notice that 8 is the minimum N
for which Parallel 3 is distinct from Parallel 2.

The scalability of Parallel I is very limited by virtue of

its serial G computation. Parent selection and child
generation dominates G computation. While the

former is global in character, the latter and more
dominant of the two is independent over children and,

given parent pair distribution, parallelizes like problem
analysis with a communication requirement of similar

character, leading to definition of Gp and Cp; the
remainder of G becoming Gn. The resulting Parallel 2

version enjoys a dramatically extended scalability,
particularly with frequent communication. Robustness
is maintained. With Parallel 2 the dominant limitation

on scalability is the growth of communication cost.
Parallel 3, which reduces that cost, is most effective in

extending scalability when N is large and
communication is frequent (CF is low). Given the
localized nature of most Parallel 3 communication

events, maintaining robustness comparable with
Parallel 2 may require a moderate reduction in CF,

particularly with large N.

All BCB implementations employ the algorithm

described in Section 2. The initial population is

randomly distributed throughout the entire design
space. Its definition is performed serially, based on a
single random number seed, to ensure that distribution.
Algorithm initialization includes a broadcast of the

updated seed along with initial population distribution.

Distinct processor-local initial populations ensure
independent child generation based on the same seed.
Total population, NPOP, values equal to an integer

multiple of N ensure balanced processor workload.
Feasible solution fitness is equal to objective value
alone, while solution fitness at an infeasible design

point equals the objective value plus a penalty. That
penalty is equal to a fixed multiple of the maximum

(most violated) constraint, where the multiple selected

5
American Institute of Aeronautics and Astronautics

is on the order of expected objective value. Child

generation on the surface of a hyper-sphere is

performed in a normalized design space by coordinate
scaling, a technique known to improve convergence.

Communication requirements are satisfied with
Message Passing Interface (MPI) send/receive pairs.

Domain base processors perform domain specific

global (serial) computation and inter-processor
message management on generations requiring inter-
processor communication. Each base processor
receives and assembles processor local parcels of

domain population data prior to necessary domain
specific global computation and redistributes updated

parcels. Message volume is dominated by population
coordinate data. Message count is reduced by
concatenation of remaining population data, including
volume, fitness, and maximum constraint, prior to

communication. Parallel 1 requires two such

communication exchanges, involving a total of 5
coordinate data sets, per affected generation,

supporting both child generation and next generation
population selection. Parallel 2 and Parallel 3 each
require a third exchange, in support of parallel child

generation. This additional exchange involves one
communication of a doubled population coordinate
data set, representing parent pairs, and a second

standard coordinate data set, representing the resulting
children population. This increases the total message

volume per affected generation by about a factor of
8/5. Given ND communication domain, N processors,

and a total population of N'POP, total message volume
and count on associated generation are of order
NDV*NPOP*(N-ND) and (N-N'D), respectively, where
NDV is the dimension of the design space. The

reduced message count and total volume realized with
increased ND, and associated increased concurrency

and locality of their dispatch, identify the sources of
communication cost savings provided by Parallel 3.

Points of intra-domain communication provide the

opportunity to repartition domain populations over
their constituent processors, with a corresponding
potential for improved evolution of domain population

prior to the next communication point. Two
alternatives, one based on equal average fitness and a

second based on design space locality, provided similar

moderate improvement over no repartitioning. The

equal fitness alternative was selected on the basis of its
negligible overhead. The cost of extensive distance
computations associated with the point locality
alternative, even when mitigated by parallel

techniques, is the source of its significant overhead.

The current implementation of child generation

requires a per processor population (parent pool) of at
least two when communication does not occur every

generation (CF > 1), imposing a general limit on N =
N-POP/2. Furthermore, robustness requires a maximum
N = NPOP/4 under these conditions. These limitations

identify NPOP as a critical factor for scalability as well
as total computation cost. For a given problem size,

excessive NPOP results in reduced algorithm
effectiveness. An increase in optimal NPOP with

problem size extends practical scalability limits with
that size. While not tested, a modification of Parallel 3

to vary communication frequency with communication
domain size, including CF = I on four-processor
domain, would extend the limit of scalability with

computational robustness to that allowing full analysis
concurrency (N = NPOP) while managing
communication overhead.

Test Case and Metrics

The hub frame structure described in ref. 4 is the test

problem. Hub frame problems are composed of a two-
dimensional arrangement of I-beams radiating from a

common hub and rigidly attached to both hub and
surrounding wall. They are optimized for minimum
material volume under a concentrated force and

moment loads applied at hub center, subject to
constraints arising from limits on material stress, local

and overall buckling resistance, and hub center

displacement. Design space dimensionality and total
constraint count depend on the number of the members
while the dimensionality of the load-deflection

equations remains constant, 3x3. Thus, the design
space can be made large and rich in constraint
nonlinearities, without expanding the analysis

computational labor.

The 20-member hub frame problem of ref. 4, modified

by replacement of a single hub center translational
constraint with independent constraint of its two
components, is the primary test problem. Table 2
summarizes member (MBR), design space dimension

(NDV), and functional constraint (NCON r) counts for
this and other addressed problems. Problem size
identifiers in the Results section consist of member

count prefixed with "IT'. For example, "H20"
identifies the 20-member problem.

6
American Institute of Aeronautics and Astronautics

Table 2. Hub Frame Size, Dimensionality,
and Constraint Count

MBR NDV NCON

20 120 766

80 480 3046

180 1080 6846

Computed test metrics, defined in the Notation section,
quantify robustness, scalability, and effectiveness of
termination criteria. All termination criteria metrics

are reported in the Results section, along with selected
robustness and scalability metrics. Our definitions of

robustness and scalability for this paper are presented
in the following two paragraphs, along with
identification of principal related metrics and
characteristic summaries of metrics not reported in the
Results section.

We define robustness as the ability to maintain solution

quality, with respect to a serial benchmark, over
increasing values of N and CF, i.e. larger processor
arrays and reduced communication. Normalized

solution volume, U, is considered to be the principal
metric of robustness. Metrics D and R also quantify

robustness in terms of the character of population
convergence. These three are reported in the Results
section. Metric B is sufficiently described as being

generally within one percent of G. Metric V is equal to
U times the benchmark V obtained on a single

processor,

We define scalability as the ability to maintain high
computational efficiency on processor arrays of

"increasing size, N, in terms of an ideal constant product
of elapsed execution time and N, with minimal

degradation in robustness. The principal metric of
scalability, E, is an N normalized equivalent of S.
Additional metrics identify sources of scalability and

its degradation, and quantify their relative impact,
Metric A consistently demonstrates a balanced
distribution of the analysis workload to be a source of

ideal speedup. Metrics O and M, the remaining
components of TTe, respectively quantify the varying
scalability of the three parallel algorithm
implementations and the strength of their

communication overhead. The metric %M is reported
in the Results section along with E and O, since it
identifies, more clearly than M, the impact of

communication cost. The significant characteristic of
communication cost M was its mild super-linear

growth as a function of N over the range addressed.
This implies %M will approach order N 2 growth while

A and O computations remain dominant, underscoring

the criticality of computational overhead.

The multiprocessor machine used in the testing was a

Silicon Graphics Origin 2000 with 256 processors. Up
to 128 processors was used. In order to experiment

with different ratios Tnfl'p, the Tp magnitude was
artificially increased by inserting in the test case

analysis an "idle loop" computation that expanded Tp
without affecting the mathematical model of the

problem physics. Two levels of Tp expansion are
tested. The first is based on a hub frame analysis with

an artificial ten-fold increase in cost, designated by the
problem identifier extension "/xl0". The second,

designated by the extension "/99p", is based on a hub
frame analysis with an artificial cost increase of a

magnitude such that the total analysis cost represents
99 percent of total execution time on a single
processor. For example, test result for "H20/xl0" and

"H20/99p" identify 20-member hub frame analyses
with these increased cost levels, distinguishing them

from standard result identified by "H20/std". Result
metrics independent of analysis cost, such as U; are
identified with no extension.

Results

Results are obtained from a series of test sets, each

providing scalability and robustness metrics for a given

parallel technique and problem size/simulated
complexity combination over power-of-two ranges of

processors (N) and communication frequencies (CF).
For each test set population size (NPOP) and

generation limit (NGEN) are held constant. N'POP
values used ensure balanced processor loading with

equal power-of-two processor local populations. Test
sets yielding scalability metrics ensure cross test
standardization by employing no termination criteria
other than a fixed limit, NGEN, on the total generation

count for population evolution. Core test set results,
establishing reported robustness and scalability, are
based on the same initial seed value for distribution

sampling. Additional testing, employing more
effective sampling for parent selection and child

generation, and providing averaged metrics over 15
random seeds substantiated these results. The

remainder of this section provides summary
comparison of parallel technique, primarily in terms of

robustness metric N and scalability metric E, for the
higher performance combinations of N and CF, when

applied to various hub frame problems.

Table 3 demonstrates the poor scalability of Parallel 1

and dramatic improvement with Parallel 2, which
parallelizes child generation, the dominant BCB
computation. Improvement is greatest for large N and

7
American Institute of Aeronautics and Astronautics

smallCF.Thedataarefortheten-foldcost20-member
problem(H20/xl0),a representationof theincreased
complexitiesof typical large scaleengineering
problems. Table 4 comparesthe BCB specific
computationcost,O, of Parallel2 withParallel1.
MetricO quantifiestheprimarysourceof scalability
degradationfor ParallelI, an implementationfor
which, on generations employing global
communication,therepresentedcomputationisentirely

serial.Thischaracteristicis illustratedbythe constant

O value over increasing N for Parallel 1 when global
communication is performed on every generation (CF

= 1). Communication cost for Parallel 1 remained less
than two and four percent for N = 32 and N = 64 for
CF values greater than eight. Parallel 2 robustness

compares well with Parallel I, both demonstrating

average solution degradation of less than four percent

when processor local population is at least 4 (N <32)

Table 3. Parallel 1 versus Parallel 2 Scalability for H20/xl0 with NPOP=128 and NGEN=1000

Parallel 1: E over CF and N Parallel 2: E over CF and N

CF

m_

8

i6

32
64

N=16

81.95

88.86

91.82

90.53

98.20

N=32

70.29

82.50

89.51

94.22

95.28

N=64

51.85

67.84

80.45

86.58

93.06

N=64

64 99.02

CF N= 16 N= 32

4 98.45 94.53 78.63

8 100.03 96.88 88.33

16 100.63 98.45 94.02

32 98.28 97.17 97.12
101.16 98.31

Table 4. Parallel 1 versus Parallel 2 BCB Specific Cost in seconds for H20/xl0 with NPOP=128 and NGEN=1000

Parallel 1: O over CF and N Parallel 2: O over CF and N

N= I N---4

1 89.40 88.90

4 89.40 39.00

16 89.40 25.70

64 89.40 22.50

N=16 N=64

88.70 89.60

25.80 23.80

10.20 [7.07
6.71 2.87

CF N=I N--4 N=16 N=64

1 82.30 26.10 12.10 9.07

4 82.30 22.20 7.15 4.08

16 82.30 21.00 5.67 1.99

64 82.30 20.70 5.31 1.44

Tables 5 and 6 compare Parallel 2 and Parallel 3

performance against H20 with NPOP increased to
allow N = 128. Table 5 shows Parallel 3 robustness

compares well with Parallel 2, both tolerating
communication intervals as :high as 32 generations,

when processor local populations are at least four, with

average solution degradation limited to about six
percent. Table 6 provides additional Parallel 3
robustness metrics, normalized objective standard
deviation (19) and mean radius of design point

distribution (R) of generation NGEN population.

Specific row and column of D each demonstrate a

positive correlation with N and CF respectively,
indicating population convergence to be slowed by

both increased and prolonged fragmentation. A weaker
form of this correlation extends to Parallel 3 U data in

Table 5. Together these motivate the use of an upper
bound on D as a termination criterion. While R

demonstrates a similar behavior, and may represent a
useful alternative termination criterion for problems

with multiple dispersed local optima, it has the
disadvantage of an increased overhead in the form of

the required distance computations.

8
American Institute of Aeronautics and Astronautics

Table 5. Parallel 2 versus Parallel 3 Robustness for H20 with IffPOP=256 and NGEN=1000

Parallel 2: U over CF and N Parallel 3: U over CF and N

Benchmark (N=I) Volume (U=100) = 12800

CF N=32

106.87

N=64

105.39

N=128

101.724

8 109.52 103.28 110.07

16 111.71 99.38 114.91

32 107.42 103.90 120.14

64 114.99108.90 130.68

CF N=32

109.134

8 105.15

64

N=64

106.64

99.45

103.04

N=128

108.82

108.51

16 106.32 111.40

32 109.91 106.71 124.51

107.03 116.16 130.21

Table 6. Parallel 3 Final Population Convergence Metrics for H20 with NPOP=256 and NGEN=1000

Metric D over CF and N Metric R over CF and N

N=32 N--64 N=128CF

4 .112E-2 .111E-2 .261E-2

8 .165E-2 .103E-2 .241E-2

16 .154E-2 .235E-2 .727E-2

32 .182E-2 .257E-2 .949E-2

64 .630E-2.926E-2 .222E-1

CF

4

N=32

.716E+0

N=64

.653E+0

N=128

.145E+1

8 .922E+0 .830E+0 .121E+l

16 .615E+0 .187E+1 .291E+1

32 .169E+1 .194E+1 .599E+1

.283E+164 .327E+1 .865E+1

Table 7 compares E for Parallel 2 and Parallel 3 when

addressing the standard cost H20 (H20/std) problem,
illustrating the general reduced efficiency obtained
when analysis cost is low, and relatively stronger

Parallel 3 performance when compared to Parallel 2 in
that case. This gain is the result of distribution of Gn

as well as the now significant C and Cp over
cornmunication domain, characteristics clearly

reflected in Tables 8 and 9, comparing O and %M for
Parallel 2 and Parallel 3 when addressing the ten-fold

cost H20/xl0 problem. Here O reduction is greater for
larger N and smaller CF, and remains significant for
moderate CF with larger N. For example, O reduction

is 50 percent when N = 128 and CF = 16. The now
significant %M of Parallel 2 is similarly reduced.

Unexpected large %M values for smaller N and larger
CF are thought to be manifestations of communication

contention occurring in the non-dedicated test
environment.

Table 7. Parallel 2 versus Parallel 3 Scalability for H20/std with NPOP=256 and NGEN=1000

Parallel 2: E over CF and N _ _ Parallel 3: E over CF and N

N=32 N=64 N=128CF

4 70.60 44.22 16.46

8 80.64 61.02 27.97

16 88.63 75.61 43.56

32 90.79 85.56 60.20

64 92.2795.22 74.65

CF N=32

4 81.35 62.23

8 87.93 73.48

N=64 N=128

31.52

40.88

16 88.59 83.08 52.88

32 92.59 89.79 68.28

64 93.43 94.78 80.28

9
American Institute of Aeronautics and Astronautics

Table 8. Parallel 2 versus Parallel 3 BCB Specific Cost in Seconds for H20/xl0 with N'POP=256 and NGEN=1000

Parallel 2: O over CF and N Parallel 3: O over CF and N

CF N= 16 N=32

4 14.30 9.25

8 12.90 7.22

16 11.30 6.44

32 I 1.80 5.58

"_, 10.60 5.45

N=64 N=128
= =

6.78 5.54

4.64 3.46

3.58 2.40

3.02 1.86

2.85'1 1.61

CF N=16 N=32 N=64 N=128

4 12.80 6.84 4.01 2.40
8 11.60 6.08 3.29 1.88

16 11.20 5.58 2.95 1.61

32 10.80 5.38 2.75 1.48

64 10.40 5.54 2.71 1.41

Table 9. Parallel 2 versus Parallel 3 Percent Communications Cost for H20/xl0 with NPOP=256 and NGEN=1000

Parallel 2: %M over CF and N Parallel 3: %M over CF and N

CF

4

8

16

32

64

I N=16 N=32 ,,.N=64 N=128
1.40 3.22 8.92 34.54

0.76 2.05 5.36 21.62

0.55 0.64 2.72 12.17

0.17 3.60 1.94 6.79

6.42 3.90 1.08 3.78

CF N=16 N=32 N=64 N=128

4 0.94 3.46 4.80 16.74

8 0.36 2.48 3.64 11.01

16 0.26 2.10 3.57 6.88

32 1.46 1.45 1.60 3.99

64 5.16 2.31 2.02 2.21

Tablel0 demonstrates Parallel 3 performance gains

when addressing higher cost analyses. Problem
H20/99p, whose analysis cost on a single processor

represents 99 percent of the total execution cost, scales

to 128 processors with near 99 percent efficiency when
employing near minimal acceptable communication
frequency. Parallel 2 demonstrates similar relative

efficiency gains when addressing higher cost analyses.

Table 10. Parallel 3 Scalability Comparison for H20/xl0 and H20/99p with NPOP=256 and NGEN=1000

H20/xl0: E over CF and N H20/99p: E over CF and N :

N=64 N=128CF N=32

4 94.50 93.44 78.31

8 95.73 95.67 85.62

16 97.07 95.45 91.14

32 98.70 98.45 94.99

64 95.8494.96 97.67

CF I'4--128

4 92.50

8 95.82

16 97.61

32 99.02

N=32 N=64

98.68 98.53

95.98 99.51

99.24 100.08

98.24 100.08

99.62 98.5364 99.70

Tables il and 12 compare Parallel 2 and Parallel 3

performance when addressing the larger 80-member
hub frame problem. Table 11 indicates Parallel 3 to be
somewhat less tolerant of infrequent communication

than Parallel 2. Comparison with Table 5 demonstrates
a reduced degradation in robustness for this larger

problem, a characteristic attributed to the need for a
larger generation limit, NGEN, a position substantiated

by the need for an NGEN well beyond 1000 for the
successful application of the approximate Kuhn-Tucker

termination criterion described later. Table 12 presents

scalability results for Parallel 2 and Parallel 3 when
applied to H80/xl0. Comparison with Table 10
illustrates the extended scalability of Parallel 3 when

applied to a larger problem. This characteristic was
observed for standard cost problems and with Parallel 2
as well. This improvement appears to be driven by the

dominance of computation growth over communication
growth, manifested in significantly reduced
communications overhead (%M metric).

10
American Institute of Aeronautics and Astronautics

Table11.Parallel2versusParallel3RobustnessforH80 with NPOP=256 and NGEN=2000

Parallel 2: U over CF and N Parallel 3: U over CF and N

Benchmark (N=l) Volume (U=I00) = 93900

CF N=32

4 100.24

8 99.35

16 104.32

32 99.11

64 96.47

N=64

100.24

103.43

98.84

98.52

105.70

N=128

100.35

97.05

107.48

106.63

117.81

N=32 N=64 N=128CF

4 98.79 104.64 102.53

8 97.80 101.91 106.84

16 98.63 97.04 106.63

32 96.45 103.38 117.41

64 107.46104.03 120.97

Table 12. Parallel 2 versus Parallel 3 Scalability for HS0/xl0 with NPOP=256 and NGEN=2000

Parallel 2: E over CF and N Parallel 3: E over CF and N

CF

4

8

16

32

64

N=32 N=64

94.72 89.49

97.16 94.26

98.63 97.06

99.28 97.56

99.00 99.18

N=128

78.20

87.03

93.05

96.25

97.23

CF N=32 N=64 N=128

4 96.50 95.61 91.21

8 98.51 97.29 94.55

16 98.91 97.99 96.61

32 98.70 98.60 97.72

64 99.2898.16 97.39

Table 13 compares the scalability of Parallel 2 and
Parallel 3 when applied to a ten-fold simulated cost
version of a 180-member hub structure (H180/xl0)

representing 1080 design variable. While population

(NPOP) remains at 256 per generation, a smaller
generation limit (NGEN) of 513 is used, one just
sufficient for an unbiased evaluation of Parallel 3

communication costs over the addressed ranges of N
and CF. The superior efficiency of Parallel 3,

particularly for larger N, is clearly shown. A
comparison of these results with the corresponding

efficiency data for H80/xl0 in Table 12 indicates this
superiority of Parallel 3 to be maintained with further

increase in problem size. For N = 128, both parallel
versions demonstrate increased scalability with

increased problem size. Additional trends of interest
include decreased E with increased N under Parallel 2

for CF = 4, but a reversal of that trend when CF
increases to 64. Also, under Parallel 3, for N = 128 E
increases above the E values in Parallel 2 when CF
increases.

Table 13. Parallel 2 versus Parallel 3 Scalability for H180Ix 10 _th NPOP=256 and NGEN=513

Parallel 2: E over CF and N Parallel 3: E over CF and N

CF N=32 N=64 N=128

4 93.54 88.51 77.76

8 96.26 93.45 87.47

16 97.58 92.13 92.90

32 97.90 83.83 92.19
64 96.2294.45 97.31

CF N=32 N=64 N=128

4 96.87 94.75 92.19

8 98.65 96.05 95.50

16 99.00 96.36 97.60

32 97.31 96.19 98.76

64 96.6499.50 99.27

11
American Institute of Aeronautics and Astronautics

Parallel3 alsoserved as the technique for comparing
two alternative termination criteria, providing the

potential for near optimal solution detection in a
minimal number of generations. The first, OD, is

based on satisfying an upper bound on the standard
deviation of an (average value) normalized objective

population, while the second, Ix'T, is based on a
geometric approximation of Kuhn-Tucker criterion
satisfaction which does not require the computation of

any Lagrange multipliers. KT equates Kuhn-Tucker
satisfaction with the ability to express the negative

objective gradient as a linear combination of one or
more positively scaled gradients of a set of critical
constraint when no constraint are violated. Set

members include all functional and side constraint

whose magnitudes are less than a designated near-zero

upper bound. Preliminary KT validation was
facilitated by generally successful application to

inequality constrained problems of the Hock and
Schittkowski test set (ref. 5) along solution paths of the

optimization code DONLP2 by Spellucci (ref. 6).

Given a design space of dimension NDV, the KT

algorithm addresses a sequence of NDV*(NDV-1)/2
two-dimensional design subspace spanned by all

unique pairs of the NDV coordinate axes. A geometric
analysis within each subspace attempts to identify
Kuhn-Tucker criterion failure by determining an

inability to express the projection of the negative
objective gradient, PNGF, as either a linear
combination of any two positively scaled projection of
critical constraint gradient, PGG, or close alignment

with a single such projection. The linear combination
determination is based on identifying a PGG bounded

critical sector of less than PI radians, which includes

PNGF. Computations involve normalized projection

components only, with no transcendental evaluations

required. While any two-dimensional Kuhn-Tucker
criterion failure immediately identifies KT termination
test failure, test success requires completion of all two-

dimensional analyses with criterion success.

Table 14 compares the effectiveness of OD with KT on
the H20 problem. Included are results for DK, a hybrid

approach reducing overhead by delaying use of KT
until a relaxed OD (D1) criterion is satisfied. For these

tests the generation limit, NGEN, was increased to

4000. D1 and D2 represent OD criteria using upper
bound, D, values of .0001 and .00005 respectively.
The critical constraint bound used with KT and DK

was 0.033. As with OD, smaller values of this bound

delay KT criteria satisfaction. Larger values of this
bound, on the other hand, potentially admit more
constraints into the critical set, leading to earlier
satisfaction. For these tests, KT termination
satisfaction is more sensitive to N than that of OD.

The OD and KT control bounds represented in Table

14 are near optimal for the problem addressed. These
results demonstrate success with both criteria, and

identify the superiority of OD, and significant cost
overhead of KT, found to be dominated by the cost of

calculating the derivatives. DK efficiency is better

than KT, but still not competitive with OD. Projected
cost reduction through parallelization of the finite

difference portions of hub flame semi-analytic
derivative computations is insufficient to render KT or

DK cost competitive, particularly for larger N.

Table 14. Termination Criteria Comparison Using Parallel 3 on H20/std with CF=-16, NPOP=256, NGEN=4000

Tie' over Criteria Type and N E' over Criteria Type and N

TYPE N=64

DK 39.38

N=16 N=32

None 100.00 100.00 100.00

D1 37.85 45.07 63.04

D2 46.74 58.19 73.60

KT 42.12 87.04 136.38

76.62 113.41

N=32

DK 95.43

TYPE N= 16

None 100.00 100.00

D1 96.87 99.02

D2 98.97 98.68

KT 89.83 90.94

95.93

N=64

100.00

98.59

97.50

80.58

89.98

U over Criteria Type and N

TYPE

None

D1

D2

N=16

DK

N=32 N=64

101.51 105.06 100.98

102.31 106.12 101.51

101.86 105.68 101.24

105.24
KT 102.48 105.24

102.31

100.98

100.98

G over Criteria Type and N

TYPE

None

N=16

4000

KT

N=32

4000

D1 1473 1793

D2 1857 2305 2881

1377 2881 4000

1473DK 2881

N=64

4000

2497

4000

]2
American Institute of Aeronautics and Astronautics

i'j

Table 15 presents averaged robustness and scalability
data for 15 replications of H20/std solution with

Parallel 3, using a random distribution of initial
sampling seed. Comparison with corresponding Table
5 and Table 7 data, obtained with the single seed value
on which all above results are based, substantiate these

results. The improved benchmark (BM) volume of

Table 15 reflects the use of the previously mentioned

more effective sampling technique. Variation of U

over range of initial seed was typically ten percent of
BM. Table 15 E values are significantly improved

over corresponding Parallel 3 E values of Table 7, and
can be traced to increased communication efficiency
with longer (replicated solution) communication

sequences, suggesting an improved amortization of
communication startup costs.

Table 15. Parallel 3 Replication Averaged Performance for H20/std With NPOP=256, NGEN=1000,

and Improved Sampling

Robustness: U over CF and N

BM Volume (2q=100) = 11900
Scalability: E over CF and N

N=32 N=64 N=128CF

4 99.83 102.78 104.80
8 103.03 103.87 106.40

16 105.39 104.88 112.12

32 105.47 109.34 119.02

64 114.48109.26 127.44

CF N=32 N=64 N=128

4 83.54 70.32 46.15

8 91.35 81.97 59.31
16 94.70 89.18 71.85

32 97.78 93.50 80.96

64 96.2098.83 87.60

Population size, NPOP, is identified in the

Implementation section as a critical factor for our
parallel implementations of BCB. These require a
minimum processor local population of two, and larger

(e.g. four) to maintain robustness. While the
modification of Parallel 3 identified there promises to

extend parallel computation with robustness to N =
N-POP processors (with some additional localized
communication), additional scalability based on a

coarse-grained distribution of problem analysis
requires a larger population.

The effectiveness of increasing formal scalability with

a larger population depends on converging to a robust
solution in a corresponding reduced number of
generations. Table 16 compares the volume of H20

solution volume, V, computed by Parallel 2 with a
fixed number of total problem analyses, NGEN*N-POP

= 256,000, over a varying number, NGEN, of
generations. In this case, the results obtained with N =

1, and N = 8 with CF = 1, 8, and 64 all indicate optimal
V to occur with NGEN between 2000 and 4000,

suggesting an optimal N between 64 and 128. The
significantly larger increases in V obtained with larger
than optimal N-POP, compared with those obtained

with smaller than optimal NPOP, indicate optimal
NPOP over-estimation to be more detrimental to BCB

performance than under-estimation. Additional testing
with N-POP values of 256, 512, and 1024 on up to 128

processors substantiated these results, demonstrating
effective parallel BCB scalability of a given hub frame
problem to be limited by a critical population size. Our

experience with hub frame problem of larger size
suggests a corresponding increase in critical population
sizes.

Table 16. Parallel 2 Computed V Variation with NGEN for a Fixed Number of Total Analyses

NGEN

16000

8000

4000

2000

1000

500

250

NPOP

16

32

64

128

N=I

12608

13340

126O8

N=8/CF= 1

13704

13623

11425

N=8/CF=8

12645

13337

12651

13064 11759 12830

N=8/CF=64

13634

13997

13239

12563

256 12806 14033 13832 13029

512 14467 14271 14282 14412

16376 169721024 16502 16075

]3
American Institute of Aeronautics and Astronautics

In regard to rime saved, Ts, it is apparent that in case of

an optimization by GA that time depends on the
number of individual designs in a population and on
the number of generations in the entire GA process. Let

us now refer for an example to the case represented by
Table 13. Assuming the highest efficiency from that

table of nearly 100 percent and 1 minute for analysis of
a single design, we can estimate the elapsed time for
one generation analysis to be 1 minute instead of 256

minutes (4.3 hours) that would be needed on a single
processor. On the other hand, the total elapsed time for

the entire GA optimization performed on 256

processors involving 513 consecutive generations
would require 513 minutes (8.6 hours), typically an
overnight run. However, the same operation on a single

processor machine would occupy 131,328 minutes
(2189 hours, 91 days), a time prohibitively long.

This example vividly shows that a multiprocessor
implementation of a GA algorithm may make a
difference between doing it or not even trying in case

of a large application. It also illustrates the discrete
nature of practical time saving. For example, a

reduction in total elapsed time to 12 hours would still

allow overnight execution, while a reduction to 18
hours would not, suggesting an increased difference in
practical significance between 12 and 18 hour
execution times compared with 8.6 and 12 hour times.
Similar distinctions can be made with respect to other
time scales, such as one versus five-minute turn around

for interactive processing. The example suggests also
that if the number of generations can be reduced by

increase in the population size, that trade-off should be

exploited to reduce the total elapsed time, providing a
sufficient number of processors are available. Such

compression of GA elapsed time is limited, however,
by the need to progress through a certain number of
generations. That number cannot be reduced to one by
expansion of population size. This sets a limit on the

number of processor that can be effectively engaged, as
demonstrated by Table 16. Finally, one should point
out that detailed examination of GA optimization

history reveals that the number of generation can be
reduced by terminating the process as soon as an
individual design sufficiently close to a constrained
minimum is detected. This is demonstrated in Table 14

and points to the need for a reliable criterion to

terminate a GA process.

SUm_nary, -and Concluding Remarks

Numerical experiments were conducted with an

Evolutionary Algorithm (a category of Genetic
Algorithms) for optimization to verify expectations that
that algorithm is a natural for implementation on a

machine with many processors. The Evolutionary
Algorithm was based on a Gaussian probability

distribution in its reproductive mechanism and was
introduced in ref. 2. The test was a hub structure of up
to 180 members reported in ref. 4. As many as 128

processors were used simultaneously. Parallel

algorithm implementations were successful in closely
approximating serial benchmark solution quality.

Three parallel implementations of an existing Bell-
Curve Based Evolutionary Optimization (BCB) code
were evaluated for robustness and scalability against

hub frame problems of increasing size and
computational cost. The first version, employing serial

child generation and a single communication domain,
is limited in scalability by the dominant BCB-specific

computation, parent selection and child generation.
Relative to parent selection, child generation is much
more costly and amenable to parallelization, making it

the natural target for extended parallelization.

The second version, replacing serial child generation

with a parallelized equivalent within each population
partition, results in a dramatically improved scalability

whose principal limit is communication overhead. This
version tolerates well global communication of reduced
frequency, with communication intervals up to 32

generations maintaining average solution degradation
within five percent and maximum degradation within

ten percent of the serial benchmark for the 20-member
hub frame problem.

The third and final parallel version provides scalability

beyond the above versions by replacing global (single
domain) communication, with communications within

mutually exclusive sub-domain, of varied granularity.
In effect, it treats sub-domain specific processor
subsets as single virtual processors of larger size (and

larger associated BCB population) within which local

population evolution under decreased isolation is
maintained. For a given communication frequency, the
reduction of the communication cost relative to the

other two techniques increases with the number of
processors used. Parallel 3 robustness compares well
with that of Parallel 2, when measured in terms of

solution degradation. One may conclude that multi-
domain communication strateg,les reduce
communication overhead with limited impact on
robustness.

]4
American Institute of Aeronautics and Astronautics

The resultsshow that, indeed,a multiprocessor
executionmayradicallyreducetheelapsedtimeforthe
entireGA optimizationprocess.Thatreductionmay
enablelargeGAoptimizationapplicationsthatcould
not haveevenbeenattemptedon singleprocessor
machines.Theneedfor GA to progressthrougha
certainnumberof generations,however,limits the
extentto whichelapsedtimemaybe reducedby
distributinglargerpopulationsovermoreprocessors.

On theotherhand,thenon-distributablepartof the
algorithm, and the processor-to-processor
communication generated as a result of parallel
execution were shown to be factors that severely limit

the number of processors that may be used efficiently.
In GA, these limits tend to diminish with the increase

of the cost of the design analysis but they do not 1.
vanish. Therefore, it was determined that to mitigate
the detrimental effect of the processor-to-processor

communication, it is imperative to devise techniques
that strictly control and reduce the extent of the

processor-to-processor data transmissions. The Parallel
3 technique, which employs a multiple domain

communication strategy to so limit data transmission
cost, demonstrates efficiencies exceeding 99 percent on 2.

128 processors in some cases. As might be expected,
GA optimization robustness, measured in terms of

solution quality for fixed number of design analyses
over a fixed number of generations, suffers when
reduced communication frequency and increased

population partitioning curtail communication. In the 3.

test case, processor local populations of at least four
and communication frequencies of at least every 32
generations were needed to limit average solution
degradation to five percent.

There is some potential for further reduction of the 4.
elapsed time to be realized by terminating the process
as soon as there is one design generated sufficiently
close to a constrained minimum. Two termination

criteria tested are population objective distribution

(OD) and approximate Kuhn-Tucker (KT) satisfaction
based. OD criterion satisfaction occurs when the 5.

normalized standard deviation of population objective
falls below a threshold. KT criterion satisfaction is

based on a geometric interpretation of the Kuhn-Tucker
criterion that avoids computation of Lagrange

multipliers. That interpretation depends on 6.
ascertaining both an absence of violated constraints and

the ability to express the negative objective gradient as
a linear combination of admissible critical constraint

gradients, where admissibility is determined by an

upper bound on constraint magnitude. Sensitivity
control is accomplished by OD threshold or KT bound

parameter adjustment. Although these criteria
demonstrate similar effectiveness, the derivative

requirement for KT significantly increases overhead,
reducing overall efficiency. KT also displays more
sensitivity to increased N. OD is recommended over
KT as a GA termination criterion.

Finally, it should be noted that effective and efficient
multiprocessor computing requires the method

developer to learn about the hardware/software
architecture to be used to a much greater extent than it
was necessary for a conventional single processor

implementation.

References

Sobieszczanski-Sobieski, J., Laba, K., and

Kincaid, R. K., "Bell- Curve Based Evolutionary

Optimization Algorithm", in Proceedings of the
7th AIAAKJSAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, St.
Louis MO., September 2-4, 1998. AIAA Paper 98-

4971, pp. 2083-2096.

Kincaid, R. K., Weber, M., and Sobieszczanski-

Sobieski, J., "Performance of a Bell-Curve Based

Evolutionary Optimization Algorithm" AIAA
Structures Dynamics and Materials Conference,

Atlanta, April 2000.

Amdahl, G.M. "Validity of the Single-processor
Approach to Achieving Large Scale Computing
Capabilities", AFIPS Conference Proceedings vol.

3 (Atlantic City, N.J., Apr. 18-20). AFIPS Press,
Reston, Va., 1967, pp.483-485.

Bailing, R. J., Sobieszczanski-Sobieski, J. 1994,
"An Algorithm for Solving the System-Level
Problem in Multilevel Optimization", ICASE

Report No. 94-96 and NASA Contractor Report
19501 December 1994.

Hock, W., and Schittkowski, K.; 'West Examples
for Nonlinear Programming Codes", Lecture Notes

in Economies and Mathematical Systems 187,
Springer, Berlib-Heidelberg-New York 1981.

P. Spellucci; Resources downloaded from URL
htt:p : //plato.].a. asu. edu / donlp2, ht:ra

_.2,Test environment file "testenviron.tar.gz", Code
and documentation file "donlp2.tat.gz".

15
American Institute of Aeronautics and Astronautics

Tn

Perfect distributability

Tp/N

Partial distributability without communication penalty

Tp/N + Tn

Partial distributability with the communication penalty

Tp/N + Tn +Tc(N)

___.,. - Tn + Tc(N)

C

Figure 1.

v

N

Elapsed time of a computation on multiprocessor machine vs. number of processors

Serial

Al

A2

A3

G_.....Ap

G2.__&

G3....._p

Gn

Parallel 1 Parallel 2 Parallel 3

Dismbufion across processors

l, A, iGnGi_pG3pG2pA2 A3I GIpA1 A2_

C

Elapsezl
Time

-t-

A 3 AI

G3p Gtp

C'

Cp'

Sequence ofsub-domaincommunications

A2 A3

G2p G3p

Gn'

Figure 2. Serial and Three Parallel Techniques for Execution

16
American Institute of Aeronautics and Astronautics

